Abstract
ObjectiveFor ICD-10 coding causes of death in France in 2018 and 2019, predictions by deep neural networks (DNNs) are employed in addition to fully automatic batch coding by a rule-based expert system and to interactive coding by the coding team focused on certificates with a special public health interest and those for which DNNs have a low confidence index. MethodsSupervised seq-to-seq DNNs are trained on previously coded data to ICD-10 code multiple causes and underlying causes of death. The DNNs are then used to target death certificates to be sent to the coding team and to predict multiple causes and underlying causes of death for part of the certificates. Hence, the coding campaign for 2018 and 2019 combines three modes of coding and a loop of interaction between the three. FindingsIn this campaign, 62% of the certificates are automatically batch coded by the expert system, 3% by the coding team, and the remainder by DNNs. Compared to a traditional campaign that would have relied on automatic batch coding and manual coding, the present campaign reaches an accuracy of 93.4% for ICD-10 coding of the underlying cause (95.6% at the European shortlist level). Some limitations (risks of under- or overestimation) appear for certain ICD categories, with the advantage of being quantifiable. ConclusionThe combination of the three coding methods illustrates how artificial intelligence, automated and human codings are mutually enriching. Quantified limitations on some chapters of ICD codes encourage an increase in the volume of certificates sent for manual coding from 2021 onward.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.