Abstract

Deep learning (DL) being popularly used in computer vision applications is still in its early stage in chemometric domain for spectral image processing. Often the challenge is that there are too few samples from analytical laboratory experiments to preform DL. In this study, we present a novel combination of DL and chemometrics to process spectral images even with as few as < 100 spectral images. We divided the image processing part such as object detection and recognition as the DL task and prediction of chemical property as the chemometric task based on latent space modelling. For image processing tasks of object detection and recognition, transfer learning was performed on the pretrained YOLOv4 object detection network weights to adapt the model to work well on spectral images captured in laboratory settings. Once the object is identified with DL, a background query is performed for the pre-built chemometric models to select the model for predicting the properties for specific object. The obtained results showed good potential of using DL and chemometric approaches in conjunction to reap the best of both scientific domains. This approach is of high interest to whoever involved in spectral imaging and dealing with object detection and physicochemical properties prediction of the samples with chemometric approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.