Abstract

This paper addresses the problem of systematically building a matching algorithm for the union of two disjoint theoriesE1∪E2provided that matching algorithms are known in both theoriesE1andE2. In general, the blind use of combination techniques introduces unification. Two different restrictions are considered in order to reduce this unification to matching. First, we show that combining matching algorithms (with linear constant restriction) is always sufficient for solving a pure fragment of combined matching problems. Second, the investigated method is complete for the largest class of theories where unification is not needed, including regular collapse-free theories and linear theories. Syntactic conditions are given to define this class of theories in which solving the combined matching problem is performed in a modular way.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.