Abstract

Data discretization aims to transform a set of continuous features into discrete features, thus simplifying the representation of information and making it easier to understand, use, and explain. In practice, users can take advantage of the discretization process to improve knowledge discovery and data analysis on medical domain problem datasets containing continuous features. However, certain feature values were frequently missing. Many data-mining algorithms cannot handle incomplete datasets. In this study, we considered the use of both discretization and missing-value imputation to process incomplete medical datasets, examining how the order of discretization and missing-value imputation combined influenced performance. The experimental results were obtained using seven different medical domain problem datasets: two discretizers, including the minimum description length principle (MDLP) and ChiMerge; three imputation methods, including the mean/mode, classification and regression tree (CART), and k-nearest neighbor (KNN) methods; and two classifiers, including support vector machines (SVM) and the C4.5 decision tree. The results show that a better performance can be obtained by first performing discretization followed by imputation, rather than vice versa. Furthermore, the highest classification accuracy rate was achieved by combining ChiMerge and KNN with SVM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.