Abstract

The ideal solution for diabetes mellitus type 1 patients is the generalization of artificial pancreas systems. Artificial pancreas will control blood glucose levels of diabetics, improving their quality of live. At the core of the system, an algorithm will forecast future glucose levels as a function of food ingestion and insulin bolus sizes. In previous works several evolutionary computation techniques has been proposed as modeling or identification techniques in this area. One of the main obstacles that researchers have found for training the models is the lack of significant amounts of data. As in many other fields in medicine, the collection of data from real patients is not an easy task, since it is necessary to control the environmental and patient conditions. In this paper, we propose three evolutionary algorithms that generate synthetic glucose time series using real data from a patient. This way, the models can be trained with an augmented data set. The synthetic time series are used to train grammatical evolution models that work together in an ensemble. Experimental results show that, in a scarce data context, grammatical evolution models can get more accurate and robust predictions using data augmentation. In particular we reduce the number of potentially dangerous predictions to 0 for a 30 min horizon, 2.5% for 60 min, 3.6% on 90 min and 5.5% for 2 h. The Ensemble approach presented in this paper showed excellent performance when compared to not only a classical approach such as ARIMA, but also with other grammatical evolution approaches. We tested our techniques with data from real patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.