Abstract

A QTL conditioning corn earworm resistance in soybean PI 229358 and asynthetic Bacillus thuringiensis cry1Ac transgene from therecurrent parent ‘Jack-Bt’ were pyramided intoBC2F3 plants by marker-assisted selection. Segregatingindividuals were genotyped at SSR markers linked to an anitbiosis/antixenosisQTL on linkage group M, and were tested for the presence ofcry1Ac. Marker-assisted selection was used during andafter the two backcrosses to develop a series of BC2F3plants with or without the crylAc transgene and the QTLconditioning for resistance BC2F3 plants that werehomozygous for parental alleles at markers on LG M, and whicheither had or lacked cry1Ac, were assigned to one of fourpossible genotype classes. These plants were used in no-choice, detached leaffeeding bioassays with corn earworm and soybean looper larvae (Lepidoptera:Noctuidae) to evaluate the relative antibiosis in the different genotypeclasses. Resistance was measured as larval weight gain and degree of foliageconsumption. Few larvae of either species survived on leaves expressing theCry1Ac protein. Though not as great as the effect of Cry1Ac, the PI229358-derived LG M QTL also had a detrimental effect on larval weights of bothpest species, and on defoliation by corn earworm, but did not reduce defoliation bysoybean looper. Weights of soybean looper larvae fed foliage from transgenicplants with the PI-derived QTL were lower than those of larvae fed transgenictissue with the corresponding Jack chromosomal segment. This work demonstratesthe usefulness of SSRs for marker-assisted selection in soybean, and shows thatcombining transgene-and QTL-mediated resistance to lepidopteran pests may be aviable strategy for insect control.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call