Abstract
Congestive heart failure (CHF) is a serious pathophysiological condition with high morbidity and mortality, which is hard to predict and diagnose in early age. Artificial intelligence and deep learning combining with cardiac rhythms and physiological time series provide a potential to help in solving it. In this paper, we proposed a novel method that combines a convolutional neural network (CNN) and a distance distribution matrix (DDM) in entropy calculation to classify CHF patients from normal subjects, and demonstrated the effectiveness of this combination. Specifically, three entropy methods were used to generate the distribution matrixes from a 300-point RR interval (i.e., the time interval between the successive cardiac cycles) time series, which are Sample entropy, fuzzy local measure entropy, and fuzzy global measure entropy. Then, three high representative CNN models, i.e., AlexNet, DenseNet, and SE_Inception_v4 were chosen to learn the pattern of the data distributions hidden in the generated distribution matrixes. All data used in our experiments were gathered from the MIT-BIH RR Interval Databases ( http://www.physionet.org ). A total of 29 CHF patients and 54 normal sinus rhythm subjects were included in this paper. The results showed that the combination of FuzzyGMEn-generated DDM and Inception_v4 model yielded the highest accuracy of 81.85% out of all proposed combinations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.