Abstract
This paper presents the approach that we developed to solve the ROADEF 2003 challenge problem. This work is part of a research program whose aim is to study the benefits and the computer-aided generation of hybrid solutions that mix constraint programming and meta-heuristics, such as large neighborhood search (LNS). This paper focuses on three contributions that were obtained during this project: an improved method for propagating Hamiltonian chain constraints, a fresh look at limited discrepancy search and the introduction of randomization and de-randomization within our combination algebra. This algebra is made of terms that represent optimization algorithms, following the approach of SALSA[1], which can be generated or tuned automatically using a learning meta-strategy [2]. In this paper, the hybrid combination that is investigated mixes constraint propagation, a special form of limited discrepancy search and large neighborhood search.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.