Abstract

Deep convolutional neural networks (DCNNs) are powerful models that yield impressive results at object classification. However, recent work has shown that they do not generalize well to partially occluded objects and to mask attacks. In contrast to DCNNs, compositional models are robust to partial occlusion, however, they are not as discriminative as deep models. In this work, we combine DC-NNs and compositional object models to retain the best of both approaches: a discriminative model that is robust to partial occlusion and mask attacks. Our model is learned in two steps. First, a standard DCNN is trained for image classification. Subsequently, we cluster the DCNN features into dictionaries. We show that the dictionary components resemble object part detectors and learn the spatial distribution of parts for each object class. We propose mixtures of compositional models to account for large changes in the spatial activation patterns (e.g. due to changes in the 3D pose of an object). At runtime, an image is first classified by the DCNN in a feedforward manner. The prediction uncertainty is used to detect partially occluded objects, which in turn are classified by the compositional model. Our experimental results demonstrate that combining compositional models and DCNNs resolves a fundamental problem of current deep learning approaches to computer vision: The combined model recognizes occluded objects, even when it has not been exposed to occluded objects during training, while at the same time maintaining high discriminative performance for non-occluded objects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.