Abstract
We describe a method that combines colloidal probe atomic force microscopy (AFM) and reflection interference contrast microscopy (RICM) to characterize the mechanical properties of thin and solvated polymer films. When analyzing polymer films, a fundamental problem in colloidal probe AFM experiments is to determine the distance at closest approach between the probe and the substrate on which the film is deposited. By combining AFM and RICM in situ, forces and absolute distances can be measured simultaneously. Using the combined setup, we quantify the compressive mechanics of films of the polysaccharide hyaluronan that is end-grafted to a supported lipid bilayer. The experimental data, and comparison with polymer theory, show that hyaluronan films are well-described as elastic, very soft and highly solvated polymer brushes. The data on these well-defined films should be a useful reference for the investigation of the more complex hyaluronan-rich coats that surround many living cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.