Abstract

In this paper, we propose a new modulation classification method based on the combination of clustering and Support Vector Machine (SVM), in which a new algorithm is introduced to extract key features. To recognise signals modulated based on constellation diagram, such as MPSK and MQAM; K-means clustering is adopted for recovering constellation under different number of clusters. Silhouette index is employed as a cluster validity measure to extract key features that discriminate between different modulation types. Then hierarchical SVM classifier is designed to recognise modulation types according to the key features extracted. Simulation results show that the classification rates of the algorithm proposed in this paper are much higher than those of clustering algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.