Abstract

BackgroundMultimodal modeling that combines biological and clinical data shows promise in predicting transition to psychosis in individuals who are at ultra-high risk. Individuals who transition to psychosis are known to have deficits at baseline in cognitive function and reductions in gray matter volume in multiple brain regions identified by magnetic resonance imaging. MethodsIn this study, we used Cox proportional hazards regression models to assess the additive predictive value of each modality—cognition, cortical structure information, and the neuroanatomical measure of brain age gap—to a previously developed clinical model using functioning and duration of symptoms prior to service entry as predictors in the Personal Assessment and Crisis Evaluation (PACE) 400 cohort. The PACE 400 study is a well-characterized cohort of Australian youths who were identified as ultra-high risk of transitioning to psychosis using the Comprehensive Assessment of At Risk Mental States (CAARMS) and followed for up to 18 years; it contains clinical data (from N = 416 participants), cognitive data (n = 213), and magnetic resonance imaging cortical parameters extracted using FreeSurfer (n = 231). ResultsThe results showed that neuroimaging, brain age gap, and cognition added marginal predictive information to the previously developed clinical model (fraction of new information: neuroimaging 0%–12%, brain age gap 7%, cognition 0%–16%). ConclusionsIn summary, adding a second modality to a clinical risk model predicting the onset of a psychotic disorder in the PACE 400 cohort showed little improvement in the fit of the model for long-term prediction of transition to psychosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call