Abstract

Classifier outputs in the form of continuous values have often been combined using linear sum or stacking, but little is generally known about evidential reasoning methods for combining truncated lists of ordered decisions. In this paper we introduce a novel class-indifferent method for combining such a kind of classifier decisions. Specifically we model each output given by classifiers on new instances as a list of ranked decisions that is divided into 2 subsets of decisions, which are represented by triplet-based belief functionsand then are combined using Dempster's rule of combination. We present a formalism for triplet-based belief functions and establish a range of general formulae for combining these beliefs in order to arrive at a consensus decision. In addition we carry out a comparative analysis with an alternative representation dichotomous belief functionson the UCI benchmark data. We also compare our combination method with the popular methods of stacking, boosting, linear sum and majority voting over the same benchmark data to demonstrate the advantage of our approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.