Abstract

The problem of classifier combination is considered in the context of the two main fusion scenarios: fusion of opinions based on identical and on distinct representations. We develop a theoretical framework for classifier combination for these two scenarios. For multiple experts using distinct representations we argue that many existing schemes such as the product rule, sum rule, min rule, max rule, majority voting, and weighted combination, can be considered as special cases of compound classification. We then consider the effect of classifier combination in the case of multiple experts using a shared representation where the aim of fusion is to obtain a better estimate of the appropriatea posteriori class probabilities. We also show that the two theoretical frameworks can be used for devising fusion strategies when the individual experts use features some of which are shared and the remaining ones distinct. We show that in both cases (distinct and shared representations), the expert fusion involves the computation of a linear or nonlinear function of thea posteriori class probabilities estimated by the individual experts. Classifier combination can therefore be viewed as a multistage classification process whereby thea posteriori class probabilities generated by the individual classifiers are considered as features for a second stage classification scheme. Most importantly, when the linear or nonlinear combination functions are obtained by training, the distinctions between the two scenarios fade away, and one can view classifier fusion in a unified way.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.