Abstract
Reliable estimates of outdoor air pollution concentrations are needed to support global actions to improve public health. We developed a new approach to estimating annual average outdoor nitrogen dioxide (NO2) concentrations using approximately 20,000 ground-level measurements in Flanders, Belgium combined with aerial images and deep neural networks. Our final model explained 79% of the spatial variability in NO2 (root mean square error of 10-fold cross-validation = 3.58 μg/m3) using only images as model inputs. This novel approach offers an alternative means of estimating large-scale spatial variations in ambient air quality and may be particularly useful for regions of the world without detailed emissions data or land use information typically used to estimate outdoor air pollution concentrations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.