Abstract

AbstractBuilding blocks and heteroatom alignments are two determining factors in designing multiple resonance (MR)‐type thermally activated delayed fluorescence (TADF) emitters. Carbazole‐fused MR emitters, represented by CzBN derivatives, and the heteroatom alignments of ν‐DABNA are two star series of MR‐TADF emitters that show impressive performances from the aspects of building blocks and heteroatom alignments, respectively. Herein, a novel CzBN analog, Π‐CzBN, featuring ν‐DABNA heteroatom alignment is developed via facile one‐shot lithium‐free borylation. Π‐CzBN exhibits superior photophysical properties with a photoluminescence quantum yield close to 100 % and narrowband sky blue emission with a full width at half maximum (FWHM) of 16 nm/85 meV. It also gives efficient TADF properties with a small singlet‐triplet energy offset of 40 meV and a fast reverse intersystem crossing rate of 2.9×105 s−1. The optimized OLED using Π‐CzBN as the emitter achieves an exceptional external quantum efficiency of 39.3 % with a low efficiency roll‐off of 20 % at 1000 cd m−2 and a narrowband emission at 495 nm with FWHM of 21 nm/106 meV, making it one of the best reported devices based on MR emitters with comprehensive performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.