Abstract

We report herein the application of a set of algorithms to identify a large number (2869) of single-copy orthologs (COSII), which are shared by most, if not all, euasterid plant species as well as the model species Arabidopsis. Alignments of the orthologous sequences across multiple species enabled the design of "universal PCR primers," which can be used to amplify the corresponding orthologs from a broad range of taxa, including those lacking any sequence databases. Functional annotation revealed that these conserved, single-copy orthologs encode a higher-than-expected frequency of proteins transported and utilized in organelles and a paucity of proteins associated with cell walls, protein kinases, transcription factors, and signal transduction. The enabling power of this new ortholog resource was demonstrated in phylogenetic studies, as well as in comparative mapping across the plant families tomato (family Solanaceae) and coffee (family Rubiaceae). The combined results of these studies provide compelling evidence that (1) the ancestral species that gave rise to the core euasterid families Solanaceae and Rubiaceae had a basic chromosome number of x=11 or 12.2) No whole-genome duplication event (i.e., polyploidization) occurred immediately prior to or after the radiation of either Solanaceae or Rubiaceae as has been recently suggested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.