Abstract
By exploiting the superior adsorption capacity of ultra-stable Y-type zeolite (USY) and accurate input of energy by electromagnetic induction field (EMIF) technique, we successfully designed a highly energy-efficient system to eliminate gaseous toluene a common air pollutant. Pristine USY as adsorbent enriches gaseous toluene by a factor of fifteen, via room-temperature adsorption and then EMIF-driven thermal desorption. This operation model involving intermittent heating and mass transfer saves a lot of energy. Especially during temperature rising, 98.9% electric energy can be saved by the EMIF heating in comparison with conventional furnace approaches. In the bi-functional “adsorption-catalytic oxidation” 1Pt/USY, the concentrated toluene undergoes direct oxidation into CO2 rather than desorption when the EMIF heating starts, so one-step enrichment and mineralization are realized. In addition, the developed bi-functional system operates between adsorption and catalytic decomposition flexibly, which makes it ideal for cleaning VOCs emitted from intermittent sources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.