Abstract

We are concerned with the problem of image segmentation, in which each pixel is assigned to one of a predefined finite number of labels. In Bayesian image analysis, this requires fusing together local predictions for the class labels with a prior model of label images. Following the work of Bouman and Shapiro (1994), we consider the use of tree-structured belief networks (TSBNs) as prior models. The parameters in the TSBN are trained using a maximum-likelihood objective function with the EM algorithm and the resulting model is evaluated by calculating how efficiently it codes label images. A number of authors have used Gaussian mixture models to connect the label field to the image data. We compare this approach to the scaled-likelihood method of Smyth (1994) and Morgan and Bourlard (1995), where local predictions of pixel classification from neural networks are fused with the TSBN prior. Our results show a higher performance is obtained with the neural networks. We evaluate the classification results obtained and emphasize not only the maximum a posteriori segmentation, but also the uncertainty, as evidenced e.g., by the pixelwise posterior marginal entropies. We also investigate the use of conditional maximum-likelihood training for the TSBN and find that this gives rise to improved classification performance over the ML-trained TSBN.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.