Abstract

Paddy Azolla is considered as a promising technical approach to reduce ammonia (NH3) volatilization and increase nitrogen use efficiency (NUE). However, it is not effective in highly fertilized paddy fields as the high ammonium N (NH4+-N) concentrations adversely inhibit the growth and N uptake of Azolla. Urease inhibitors could effectively decrease NH4+-N concentrations in surface water and NH3 volatilization. However, a lack of information still exists regarding the combined effects of Azolla and urease inhibitors on NH3 volatilization, NUE, and grain yield (GY) of rice. A two-year field experiment was conducted including five treatments (no urea application (control), urea (N), urea + Azolla (NA), urea + urease inhibitor (NUI), and urea + Azolla + urease inhibitor (NAUI)). Results showed that NA treatment (−25.2%) was not effective in reducing NH3 volatilization compared with NUI treatment (−43.3%). The NAUI treatment substantially reduced NH3 volatilization (−54.6%) more than that by NA and NUI treatments, primarily because of the lower NH4+-N concentrations, pH, and temperature in surface water. Furthermore, NAUI treatments significantly increased the grain yield (GY) and the apparent N recovery efficiency (ANRE) of rice by 9.0–9.7% and 66.0–71.3%, respectively. The significant increase in GY was mainly from the increased panicle number (4.0%), spikelet number per panicle (15.9%), and total biomass (22.9%), which caused by the enhanced total N uptake (35.8%). NAUI treatment also decreased the yield-scaled NH3 volatilization by 61.1–63.6%. Overall, the co-application of Azolla and urease inhibitor in the rice field substantially decreased NH3 volatilization, and increased NUE and rice yield.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call