Abstract

We present a general approach for integrating certain mathematical structures in first-order equational theorem provers. More specifically, we consider theorem proving problems specified by sets of first-order clauses that, contain the axioms of a commutative ring with a unit element. Associative-commutative superposition forms the deductive core of our method, while a convergent rewrite system for commutative rings provides a starting point for more specialized inferences tailored to the given class of formulas. We adopt ideas from the Grobner basis method to show that many inferences of the superposition calculus are redundant. This result is obtained by the judicious application of the simplification techniques afforded by convergent rewriting and by a process called symmetrization that embeds inferences between single clauses and ring axioms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.