Abstract

AbstractRoot system architecture is important for common bean (Phaseolus vulgaris) adaptability to diverse environments. Beans employ complex adaptive root mechanisms for coping with multiple stresses in production environments. Understanding genetic control of root traits is central to improvement of common bean for adaptation to marginal environments. The objectives of this study were to (i) determine combining ability of root and agronomic traits and (ii) estimate the heritability and genetic correlation of root and agronomic traits in common bean. Four bean lines with superior root traits were crossed with four locally adapted varieties in a North Carolina II mating scheme to generate 16 crosses. The 16 F1s were selfed and advanced to F2 generation. Eight parents and their F2 progenies were evaluated in an alpha‐Lattice design with two replications. General and specific combing ability mean squares were significant (p ≤ .05) for all traits measured. General predictability ratios ranged from .47 to .68 across locations suggesting that both additive and non‐additive gene action modulate root traits and seed yield. Positive and significant (p ≤ .05) phenotypic and genetic correlations revealed significant association between root traits and yield. Moderate to high heritability estimates of between .43 and .67 were realized. Such estimates point to possible deployment of a successful selection programme. Genotype AFR398 displayed significant positive GCA effects among its crosses for both root and agronomic traits hence a potential candidate genotype for inclusion in a bean genetic improvement programme for marginal environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call