Abstract

A diallel method was employed in which eight genotypically diverse lines of mungbean were crossed among themselves in all possible combinations excluding reciprocals. The mean square due to general combining ability (GCA) and specific combining ability (SCA) were significant for all the characters except mean square due to (SCA) for clusters per plant and seed yield per plant indicating importance of both additive as well as non-additive gene action. The estimates of variances due to specific combining ability were higher than general combining ability for all the traits except days to 50 % flowering, primary branches per plant, clusters per plant and seed yield per plant pointed out to be the preponderance of non-additive gene effects in the expression of these characters. Whereas predictability ratios were greater than the value of 0.5 for days to 50 % flowering, primary branches per plant, clusters per plant and seed yield per plant indicating the predominance of additive gene action for these characters. However, predictability ratio exhibited less than 0.5 values for rest of the characters indicating the predominance of non- additive gene action. The good general combiners for seed yield per plant were BM-4, PDM-139, ML-131, and IPM 99-125. The best specific cross combinations wereRMG-344 x RMG-1045, RMG-1035 x RMG-1045 and BM-4 x PDM-139. showed the highest positive significant SCA effect for seed yield per plant. These cross combinations could be utilized for further use in breeding programme for improvement in yield of mungbean.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call