Abstract

Many metal-organic cages (MOCs) and a few hydrogen-bonded organic cages (HOCs) have been investigated, but little is reported about cooperative self-assembly of MOCs and HOCs. Herein, we describe an unprecedented MOC&HOC co-crystal composed of tetrahedral Ti4 L6 (L=embonate) cages and in-situ-generated [(NH3 )4 (TIPA)4 ] (TIPA=tris(4-(1H-1,2,4-triazol-1-yl)phenyl)amine) cages. Chiral transfer is observed from the enantiopure Ti4 L6 cage to enantiopure [(NH3 )4 (TIPA)4 ] cage. Two homochiral supramolecular frameworks with opposite handedness (PTC-235(Δ) and PTC-235(Λ)) are formed. Such MOC&HOC co-crystal features high stability in water and other solvents, affording single-crystal-to-single-crystal transformation to trap CH3 CN molecules and identify disordered NH4 + cations. A tablet pressing method is developed to test the third-order nonlinear optical property of KBr-based PTC-235 thin film. Such a thin film exhibits an excellent optical limiting effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.