Abstract

Studies into the suitability of a novel, widely tunable telecom L-band (1563–1613 nm) digital supermode distributed Bragg reflector (DS-DBR) laser for spectroscopy in the mid-IR are presented. Light from the DS-DBR laser was mixed with 1064 nm radiation in a periodically poled lithium niobate (PPLN) crystal to generate mid-IR light by quasi phase matching difference frequency generation (QPM-DFG). The resultant continuous wave radiation covered the range 3000–3200 cm−1 with powers of up to 2.6 μW. The use of such laser light for spectroscopic applications was illustrated by performing absorption experiments on both narrow-band and broad-band absorbers, namely methane (CH4) and methanethiol (CH3SH). Wavelength modulation spectroscopy (WMS) on CH4 demonstrated that the modulation characteristics of the DS-DBR laser observed in the near-IR were transposed to the mid-IR and yielded a sensitivity of 3.1×10−6 cm−1 Hz−1/2 over a 47 cm path length. In the CH3SH spectrum, the absorption feature at 3040 cm−1 was identified as a potential useful region for monitoring this biomarker in exhaled breath at reduced pressures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.