Abstract
The development of a secure battery management system (BMS) for electric vehicles depends heavily on the correct assessment of the online state-of-charge (SOC) of Li-ion batteries. The ternary lithium battery is used as the research object in this paper, and a second-order RC equivalent circuit model is developed to characterize the dynamic operating characteristics of the battery. In order to solve the problem that the adaptive unscented Kalman filter (AUKF) algorithm is easy to fail SOC estimation because the error covariance matrix is not positively definite due to the incomplete accuracy of the equivalent circuit model, a corresponding solution is proposed. Considering the poor real-time battery SOC estimate caused by the battery model’s fixed parameters, therefore we propose the Variable Forgetting Factor Recursive Least Squares (VFFRLS) algorithm for joint estimation of Li-battery SOC and the Singular Value Decomposition-AUKF (SVD-AUKF) algorithm. The SVD-AUKF algorithm can accurately estimate the SOC of the battery when the error covariance is negative. The algorithm can be adaptively adjusted in both the parameter identification and SOC estimation stages, which can effectively solve the problem of poor estimation accuracy caused by fixed parameters. According to experiments, under two separate dynamic operating situations, the joint estimation algorithm’s error is less than 2%, and its stability has also been greatly enhanced. At the same time, when the initial SOC value is set incorrectly, the convergence time of the algorithm proposed in this paper can reach within 2.1 seconds for BBDST and DST conditions, which can be well adapted to complex working conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.