Abstract

Atomistic simulations on the silicon carbide precipitation in bulk silicon employing both, classical potential and first-principles methods are presented. The calculations aim at a comprehensive, microscopic understanding of the precipitation mechanism in the context of controversial discussions in the literature. For the quantum-mechanical treatment, basic processes assumed in the precipitation process are calculated in feasible systems of small size. The migration mechanism of a carbon $\ensuremath{\langle}1\phantom{\rule{0.16em}{0ex}}0\phantom{\rule{0.16em}{0ex}}0\ensuremath{\rangle}$ interstitial and silicon $\ensuremath{\langle}11\phantom{\rule{0.16em}{0ex}}0\ensuremath{\rangle}$ self-interstitial in otherwise defect-free silicon are investigated using density functional theory calculations. The influence of a nearby vacancy, another carbon interstitial and a substitutional defect as well as a silicon self-interstitial has been investigated systematically. Interactions of various combinations of defects have been characterized including a couple of selected migration pathways within these configurations. Most of the investigated pairs of defects tend to agglomerate allowing for a reduction in strain. The formation of structures involving strong carbon--carbon bonds turns out to be very unlikely. In contrast, substitutional carbon occurs in all probability. A long range capture radius has been observed for pairs of interstitial carbon as well as interstitial carbon and vacancies. A rather small capture radius is predicted for substitutional carbon and silicon self-interstitials. Initial assumptions regarding the precipitation mechanism of silicon carbide in bulk silicon are established and conformability to experimental findings is discussed. Furthermore, results of the accurate first-principles calculations on defects and carbon diffusion in silicon are compared to results of classical potential simulations revealing significant limitations of the latter method. An approach to work around this problem is proposed. Finally, results of the classical potential molecular dynamics simulations of large systems are examined, which reinforce previous assumptions and give further insight into basic processes involved in the silicon carbide transition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.