Abstract

In the present study X-ray Photoelectron Spectroscopy (XPS) combined with in situ electrochemical and Kelvin probe measurements was used in order to get a deeper insight on the mechanism of the cation transport through NaY zeolite and the charge transfer through the Au electrode/zeolite interface. It is shown that by imposing a potential gradient across the NaY powder which is sandwiched between two electrodes, Na + ions can be electrically transferred to or from the Au working electrode area, following the direction of the applied potential between the two electrodes. Two peaks corresponding to sodium species were detected by means of in situ XPS investigation during potential application. The first peak of Na1s photoelectrons with binding energy at 1072.2 ± 0.2 eV is attributed to Na adsorbed on the grounded Au electrode with its coverage remaining unchanged upon potential imposition. The second peak is directly associated with Na present in the zeolite and upon potential application its binding energy varies proportionally with the variation of the surface potential measured by Kelvin probe. Upon varying the potential from − 4 to + 4 V between the working and counter electrode, the Na + concentration decreases by ca30% at the Au/zeolite interface. However the invariant amount of Na on the Au electrode under vacuum shows that the variation in Na + concentration is not due to ionic transfer onto the Au surface but instead Na + accumulation can be assumed at the Au/zeolite interface. On the other hand, current or potential application under O 2 atmosphere promotes the electrocatalytic reaction of Na + towards the formation of Na 2O on the Au electrode surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.