Abstract

Power quality (PQ) issues have become more important than before due to increased use of sensitive electrical loads. In this paper, a new hybrid algorithm is presented for PQ disturbances detection in electrical power systems. The proposed method is constructed based on four main steps: simulation of PQ events, extraction of features, selection of dominant features, and classification of selected features. By using two powerful signal processing tools, i.e. variational mode decomposition (VMD) and S-transform (ST), some potential features are extracted from different PQ events. VMD as a new tool decomposes signals into different modes and ST also analyzes signals in both time and frequency domains. In order to avoid large dimension of feature vector and obtain a detection scheme with optimum structure, sequential forward selection (SFS) and sequential backward selection (SBS) as wrapper based methods and Gram–Schmidt orthogonalization (GSO) based feature selection method as filter based method are used for elimination of redundant features. In the next step, PQ events are discriminated by support vector machines (SVMs) as classifier core. Obtained results of the extensive tests prove the satisfactory performance of the proposed method in terms of speed and accuracy even in noisy conditions. Moreover, the start and end points of PQ events can be detected with high precision.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call