Abstract

Abstract Interactions such as competition, intraguild predation (IGP), and cannibalism affect the development and coexistence of predator populations and can have significance for biological control of commonly exploited pest organisms. We studied the consequences of combined versus single release of two predaceous mite species (Phytoseiidae), with differing degrees of diet specialization, on their population dynamics and the suppression of the carmine spider mite, Tetranychus cinnabarinus Boisduval (Tetranychidae), on greenhouse-grown gerbera. Population growth of the specialist predator Phytoseiulus persimilis Athias-Henriot was greater and population decline steeper when released in combination with the generalist Neoseiulus californicus McGregor than when released alone. In contrast, the N. californicus population grew and declined more gradually when released in combination with P. persimilis, compared to the single species release. The differential impact on each other's population dynamics can be primarily attributed to contrasting properties in competition, IGP, and cannibalism. At the same overall predator density and as long as prey was abundant, the specialist P. persimilis was more strongly affected by intraspecific competition than by interspecific competition with the generalist N. californicus. In contrast, interspecific competition with P. persimilis had a greater impact on N. californicus than intraspecific competition. After prey depletion, the generalist predator N. californicus was more likely to engage in IGP than was the specialist predator P. persimilis. Overall, the study demonstrates that prey specificity has significance for the quality and intensity of predator–predator interactions and indicates potential implications for biological control of spider mites. All predator releases (i.e., either species alone and both species in combination) resulted in reduction of the spider mite population to zero density. Individual release of the specialist P. persimilis led to the most rapid spider mite suppression. Nonetheless, in perennial greenhouse-grown crops P. persimilis and N. californicus could have complementary effects and a combination of the two predators could enhance long-term biological control of spider mites. The potential risks and benefits associated with the release of both species are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call