Abstract

The X-ray micro-tomography (micro-CT) technique has been used to visualize the microstructure of granules produced by high shear wet granulation and the dynamic evolution of porosity during granule dissolution. Using acetaminophen (paracetamol) as the active pharmaceutical ingredient (API) and microcrystalline cellulose (Avicel PH-200) as an excipient, the porosity of the granules was systematically influenced by the granulation process parameters (binder/solids ratio, impeller speed and wet massing time). An increase of granule porosity from 7% to 10% and 18% lead to a decrease of the dissolution time t90 from 435 min to 98 min and 37 min, respectively. The combination of time-resolved micro-CT imaging with UV/vis detection of the quantity dissolved made it possible to evaluate the effective diffusion coefficient of the API through the granule structure, and thus establish a quantitative structure–property relationship for dissolution. A power-law dependence of the effective diffusivity on porosity (Archie's law) was found to hold.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.