Abstract

A body of evidence has suggested that tissue-engineered nerve grafts hold promise for the surgical repair of spinal cord injuries. In this study, a novel nerve graft was prepared to be implantated into a 5 mm gap which was caused by a complete transection of the rat spinal cord. The graft was featured by incorporation of neurotrophin-3 into a chitosan-based tube scaffold with a spinal cord-mimicking, partition-type architecture, which was prepared based on the morphometric insights of normal spinal cord anatomy. A set of behavioral, functional, and histological examinations were carried out to evaluate the repair. Results from Basso, Beattie, and Bresnahan tests, motor evoked potential measurements, anterograde tracing, and histological analyses suggested that the combined application of chitosan as the scaffold biomaterial, a spinal cord-mimicking partition-type as the scaffold architecture, and neurotrophin-3 (NT-3) as the bioactive component might probably create synergetic promotion on spinal cord regeneration. This composite nerve graft yielded significantly better results in axonal regeneration and function restoration as compared to its scaffold alone or other types of hollow tube scaffold alone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.