Abstract

The concentrations and isotopic compositions of dissolved inorganic carbon (DIC) and particulate organic carbon (POC) were measured in order to better constrain the sources and cycling of POC in Lake Fuxian, the largest deep freshwater lake in China. Model results based on the combined δ13C and Δ14C, showed that the average lake-wide contributions of autochthonous POC, terrestrial POC, and resuspended sediment POC to the bulk POC in Lake Fuxian were 61%, 22%, and 17%, respectively. This indicated autochthonous POC might play a dominant role in sustaining large oligotrophic lake ecosystem. A mean 17% contribution of resuspended sediment POC to the bulk POC implied that sediment might have more significant influence on aquatic environment and ecosystem than previously recognized in large deep lakes. The contributions of different sources POC to the water-column POC were a function of the initial composition of the source materials, photosynthesis, physical regime of the lake, sediment resuspension, respiration and degradation of organic matter, and were affected indirectly by environmental factors such as light, temperature, DO, wind speed, turbidity, and nutrient concentration.This study is not only the first systematic investigation on the radiocarbon and stable isotope compositions of POC in large deep freshwater lake in China, but also one of the most extensive radiocarbon studies on the ecosystem of any great lakes in the world. The unique data constrain relative influences of autochthonous POC, terrestrial POC, and resuspended sediment POC, and deepen the understanding of the POC cycling in large freshwater lakes. This study is far from comprehensive, but it serves to highlight the potential of combined radiocarbon and stable carbon isotope for constraining the sources and cycling of POC in large lake system. More radiocarbon investigations on the water-column POC and the aquatic food webs are necessary to illuminate further the fate of autochthonous POC, terrestrial POC, and resuspended sediment POC, and their eco-environmental effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.