Abstract

In the frame of a US-DOE sponsored project, ANL, BNL, INL and LANL have performed a joint multidisciplinary research activity in order to explore the combined use of integral experiments and covariance data with the objective to both give quantitative indications on possible improvements of the ENDF evaluated data files and to reduce at the same time crucial reactor design parameter uncertainties. Methods that have been developed in the last four decades for the purposes indicated above have been improved by some new developments that benefited also by continuous exchanges with international groups working in similar areas. The major new developments that allowed significant progress are to be found in several specific domains: a) new science-based covariance data; b) integral experiment covariance data assessment and improved experiment analysis, e.g., of sample irradiation experiments; c) sensitivity analysis, where several improvements were necessary despite the generally good understanding of these techniques, e.g., to account for fission spectrum sensitivity; d) a critical approach to the analysis of statistical adjustments performance, both a priori and a posteriori; e) generalization of the assimilation method, now applied for the first time not only to multigroup cross sections data but also to nuclear model parameters (the “consistent” method).This article describes the major results obtained in each of these areas; a large scale nuclear data adjustment, based on the use of approximately one hundred high-accuracy integral experiments, will be reported along with a significant example of the application of the new “consistent” method of data assimilation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call