Abstract

Recently, reservoirs in southern China are witnessing incidents involving black water, which are harmful to the aquatic ecosystem. This study unravels the cause of the black water events by studying the occurrence and the ecological risks of contaminants (Pb, Cu, Cd, Zn, Ni, TFe, Mn, S, P, and DOC) in sediments of Tianbao reservoir. Due to the significantly high concentration of TFe, Mn, and P in the sediments, the study further used the thin film diffusion gradient (DGT) technology and high-resolution dialysis method to investigate the movement of Fe2+, Mn2+, S2-, and reactive P within the sediments. The ecological risk assessment (threshold effect level and probable effect level) showed that the sediments had a low concentration of Pb, Cu, Cd, Zn, and Ni. High organic matter from the Eucalyptus plantation surrounding the reservoir, as well as the intense thermal stratification of the reservoir, caused the hypolimnion to be hypoxic (DO < 2mg/L). The diffusion fluxes at the water-sediment boundary (WSB) demonstrated a significant movement of Fe2+, Mn2+, and PO43- from the sediments into the overlying water, while the movement of S2- was in both directions due to hypoxia. A high correlation Fe-DOC (r = 0.9), Fe-S (r = 0.8), and Mn-S (r = 0.7) and the redox interaction of Fe2+, Mn2+, S2-, P, and DOC at the hypoxic WSB caused the production of black substances in the hypolimnion contributing to the so-called black water reservoir.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call