Abstract

In conventional metabolism and pharmacokinetic studies, radioactive isotopes are used to identify and quantify the breakdown products of xenobiotics. However, the stable isotope (13) C provides a cheaper and less hazardous alternative. Metabolites of (13) C-enriched xenobiotics can be detected, quantified and identified by (13) C-filtered NMR spectroscopy. However, one obstacle to using (13) C is its 1.1% natural abundance that produces a background signal in (13) C-filtered NMR spectra of crude biological extracts. The signal makes it difficult to distinguish between (13) C-enriched xenobiotics resonances from endogenous metabolites unrelated to the xenobiotic. This study proposes that the (13) C background signal can be distinguished from resonances of (13) C-enriched xenobiotics by the absence of a (12) C component in the xenobiotic. This is detected by combined analysis of (13) C-filtered and -edited NMR spectra. The theory underlying the approach is described and the method is demonstrated by the detection of sub-microgram amounts of (13) C-enriched phenacetin in crude extracts of hepatocyte microsomes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.