Abstract
The diffusive gradients in thin films (DGT) were field deployed alongside the shrimp Litopenaeus vannamei at seven sites with different levels of contamination to assess the potentially bioavailable and toxic fraction of metal contaminants. After 7 days of exposure, several antioxidant biomarkers were quantified in hepatopancreas of exposed shrimps, and tissue levels as well as the total, dissolved, and DGT-labile concentrations of metal contaminants were determined in the pooled site samples. The results showed that the caged shrimps had high tissue contaminant concentrations and significantly inhibited antioxidant responses at the more contaminated sites. DGT-labile metal concentrations provided better spatial resolution of differences in metal contamination when compared with traditional bottle sampling and transplanted shrimp. The total, dissolved, and DGT-labile metal fractions were used to evaluate the potential bioavailability of metal contaminants, comparing with metal accumulation and further linking to antioxidant biomarker responses in tissues of exposed shrimps. Regression analysis showed the significant correlations between DGT-Cu concentrations and tissue-Cu and activities of some biomarker responses in the shrimp hepatopancreas. This indicated that DGT-labile Cu concentrations provided the better prediction of produced biological effects and of the bioavailability than the total or dissolved concentrations. The study supports the use of methods combining transplanted organisms and passive sampling for assessing the chemical and ecotoxicological status of aqueous environments and demonstrates the capability of the DGT technique as a powerful tool for measuring the bioavailability-based water quality in variable coastal environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.