Abstract

The biomechanical, biochemical, and ultrastructural effects of a multitherapeutic protocol were studied using regenerating rabbit Achilles tendons. The multitherapeutic protocol was composed of low-intensity Ga:As laser photostimulation, low intensity ultrasound, and electrical stimulation. Achilles tendons of 63 male New Zealand rabbits were tenotomized, sutured, immobilized, and subjected to the multitherapeutic protocol for five days, after which casts were removed and the therapy was continued for nine more days without electrical stimulation. The tendons were excised and compared with control tendons. Multitherapy treatment produced a 14% increase in maximal strength, a 42% increase in load-at-break, a 20% increase in maximal stress, a 45% increase in stress-at-break, a 21% increase in maximal strain, and a 14% increase in strain-at-break. Similarly, multitherapy treatment was associated with an increase in Young's modulus of elasticity of 31%, an increase in energy absorption at maximum load of 9%, and an increase in energy absorption at load-at-break of 11%. Biochemical analysis of the tendons showed an increase of 23% in the total amount of collagen in the multitherapy-treated tendons, with fewer mature crosslinks (decrease of 6%). Electron micrographs revealed no ultrastructural or morphologic changes in the tendon fibroblasts or in the extracellular matrix. The improvements measured in tendons receiving multitherapy were consistent but less remarkable compared with our earlier works with single modality protocols. The results warrant the hypothesis that the beneficial effects of ultrasound and laser photostimulation on tendon healing may counteract one another when applied simultaneously.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call