Abstract

A combined two-photon microscopy (TPM) and angiographic optical coherence tomography (OCT) is developed, which can provide molecular, cellular, structural, and vascular information of tissue specimens in vivo. This combined system is implemented by adding an OCT vasculature visualization method to the previous combined TPM and OCT, and then is applied to in vivo tissue imaging. Two animal models, a mouse brain cranial window model and a mouse ear cancer model, are used. Both molecular, cellular information at local regions of tissues, and structural, vascular information at relatively larger regions are visualized in the same sections. In vivo tissue microenvironments are better elucidated by the combined TPM and angiographic OCT.

Highlights

  • Both two-photon microscopy (TPM) and optical coherence tomography (OCT) are three-dimensional (3-D) tissue imaging techniques with high imaging depths

  • We recently developed a combined TPM and OCT by using separate light sources for optimal imaging conditions of individual modalities: a wavelength tunable Ti-sapphire laser and a wavelength-swept light source with its center wavelength of ∼1310 nm for TPM and OCT, respectively.[6]

  • We developed a combined TPM and angiographic OCT in order to provide vascular information of tissues together with molecular, cellular, and structural information in the same tissue sections

Read more

Summary

Introduction

Both two-photon microscopy (TPM) and optical coherence tomography (OCT) are three-dimensional (3-D) tissue imaging techniques with high imaging depths. TPM is a 3-D microscopic technique based on two-photon excitation and other nonlinear processes, and provides molecular and cellular information of tissues at subcellular resolutions down to a few hundred micrometers deep from the surface.[1] OCT is another 3-D technique. We developed a combined TPM and angiographic OCT in order to provide vascular information of tissues together with molecular, cellular, and structural information in the same tissue sections. Angiographic OCT was implemented by adapting one of OCT vasculature visualization methods. Combined TPM and angiographic OCT was applied to in vivo imaging of mouse models including a cancer model as demonstration

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.