Abstract

We report a fiber-structured hybrid nanogenerator wearable device fabricated on a single polyethylene terephthalate (PET) textile cylindrical substrate. The device can be described as a capacitor with inner and outer carbon-black-dispersed poly dimethyl siloxane (PDMS:Carbon black) electrodes, and zinc oxide and polyvinylidene fluoride (PVDF) as the dielectric medium between the electrodes. The compositional analysis in terms of X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy of the synthesized ZnO/PVDF has been measured and analyzed. The combined effect of triboelectricity between PDMS:Carbon black and PVDF, and piezoelectricity in a ZnO/PVDF hybrid, was investigated. Current–voltage characteristics were observed with varying load from 0–20 g, and resistance was observed to be decreased with load. Compared to earlier reports, there was a significant enhancement in voltage (≈5.1 V) and current (≈92.5 nA) at 10 g. Due to the introduction of interfacial polarization between PVDF and ZnO, the piezoelectric properties and pressure sensitivity of the hybrid ZnO/PVDF is enhanced. The hysterical behavior in the device’s response while measuring voltage and current with varying time shows the signature of the triboelectric effect between PVDF and ZnO, as well as PDMS:Carbon black and ZnO/PVDF layers. Reduction of triboelectric behavior was confirmed with increasing relaxation time. Because of the enhancement in piezoelectricity, fiber-structured nanogenerator (FNG) ZnO/PVDF proved to a potential candidate to be used for wearable computing devices, such as smart watches and sports bracelets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.