Abstract

The environmental risks of silica nanoparticles (SiNP) reported in the literature are contradictory and bring into question its safety for use in consumer applications. Organisms are never exposed to NPs alone in the real environment, while studies of the combined toxicity of SiNP are limited. To address this, we compared the acute toxicity of fluorescent core-shell SiNPs alone and in mixtures with Cd2+ to Ceriodaphnia dubia in the absence and presence of NOM. We identified biodistribution and feeding behaviour in addition to the traditional endpoints. NOM increased the colloidal stability of SiNPs in reconstituted water. In immobility tests, no significant effects were observed from Cd2+ exposure with NOM and varying concentrations of SiNPs. A similar pattern of curve dose-response was observed for varying concentrations of SiNPs and increasing Cd2+ concentration and constant NOM. Fluorescence microscopy verified a dose-dependent bioaccumulation of SiNPs in C. dubia. Co-exposure to 10 mg L−1 SiNP with NOM and Cd2+ resulted in a stimulated stress feeding response at the lower Cd2+ concentrations which declined at the higher dose due to a functional impairment of the digestive tract. Alterations in feeding behaviour and the increasing bioaccumulation of SiNP indicate a potential ecological risk for Ceriodaphnia dubia from the mixture exposure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.