Abstract
Microplastics and di-2-ethylhexyl phthalate (DEHP) are prevalent and emerging pollutants in agro-ecosystem, raising concerns due to their widespread co-presence. Nevertheless, their combined toxicity on terrestrial plants remains largely unexplored. This study investigated the impact of polypropylene microplastics (MPs), DEHP, and their mixture on the physiological and biochemical characteristics of cucumber seedlings. The changes of membrane stability index (MSI), antioxidase activities, photosynthetic pigments and chlorophyll fluorescence in cucumber seedlings were assessed. The results demonstrated that MPs alone significantly inhibited MSI, photosynthetic pigments (Chl a, Chl b, and Chl a + b), Fm and qp of cucumber seedlings, and significantly promoted the carotene content and antioxidant enzyme activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) in cucumber seedlings. While DEHP alone significantly inhibited MSI and photosynthetic pigments of cucumber seedlings, and significantly promoted antioxidant enzyme activities in cucumber seedlings. Moreover, the combined toxicity of MPs and DEHP was found to be less pronounced than that of the single action of MPs and DEHP. The interaction between DEHP and MPs may contribute to the reduced toxicity. Abbott's modeling revealed that the combined toxicity systems were all antagonistic (RI < 1). Two-factor analysis and principal component analysis further confirmed that the treatment of MPs alone contributed the most to the toxicological effects of the physiological properties of cucumbers. In summary, this study highlighted the importance of understanding the combined effects of MPs and DEHP on plant physiology, providing insights for the development of effective treatments for emerging pollutants in agricultural ecosystems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.