Abstract

In the past few years, microplastics are one of the ubiquitous threatening pollutants in aquatic habitats. These persistent microplastics interact with other pollutants, especially nanoparticles were adherent on the surface, which causes potential hazards in the biota. In this study, the toxic effects of individual and combined (28 days) exposure with zinc oxide nanoparticles and polypropylene microplastics were assessed in freshwater snail Pomeacea paludosa. After the experiment, the toxic effect was evaluated by the estimation of vital biomarkers activities including antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), oxidative stress in carbonyl protein (CP), lipid peroxidation (LPO), and digestive enzymes (esterase and alkaline phosphatase). Chronic exposure to pollutants in snails causes increased reactive oxygen species level (ROS) and generates free radicals in their body which leads to impairment and alterations of biochemical markers. Where alteration in acetylcholine esterase (AChE) activity and decreased digestive enzymes (esterase and alkaline phosphatase) activities were observed in both individual and combined exposed groups. Further, histology results revealed the reduction of haemocyte cells, the disintegration of blood vessels, digestive cells, calcium cells, and DNA damage was also detected in the treated animals. Overall, when compared to individual exposures, combined exposure of pollutants (zinc oxide nanoparticles and polypropylene microplastics) causes more serious harms including decline and increased antioxidant enzyme parameters, damage the protein and lipids by oxidative stress, increased neurotransmitter activity, decrease digestive enzyme activities in the freshwater snail. The outcome of this study concluded that polypropylene microplastics along with nanoparticles cause severe ecological threats and physio-chemical effects on the freshwater ecosystem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.