Abstract

SUMMARYA parameter optimization approach to the time-minimization of robotic motions along specified paths is presented for the case when: (i) the velocity profile is a prescribed sequence of constant acceleration/deceleration segments with unspecified, but bounded vertex velocities at given path stations; (ii) the relative robot/path location can be varied. Such optimizations occur when technological requirements impose a certain velocity profile along the path due to velocity and acceleration constraints. Full nonlinear manipulator dynamics and path parameterization are used to determine the optimal velocity profile and robot location consistent with the actuator/configuration limitations. No numerical integration or search for switching curve are involved in the solution. Examples of time-and-location optimized robotic motions with specified velocity profile are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.