Abstract

The combined tidal and wind driven flow and resulting sediment transport in the ocean over a flat bottom at intermediate water depth has been investigated, using a simple one dimensional two-equation turbulence closure model. This model has been verified against field measurements of a tidal flow in the Celtic Sea. The tidal velocity ellipses and the time series of the horizontal velocity components at given elevations above the bottom are well predicted through the water column although there are some deviations between the predicted and measured velocities near the bottom due to the uncertainty of the bottom roughness. For the combined tidal and wind driven flows the velocity profiles, turbulent kinetic energy profiles and surface particle trajectories are predicted for weak and strong winds. Furthermore, the bottom shear stress and the resulting bedload transport have been predicted; the parts of the particle trajectories in the close vicinity of the bottom where the bedload transport exists are displayed. Finally, the direction and magnitude of the surface drift, the depth-averaged mean velocity and the mean bedload transport are given, and the effect of the bottom roughness on the sea surface drift is investigated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.