Abstract

Epoxy nanocomposites derived from linseed oil, reinforced with graphene oxide (GO) and montmorillonite (MMT) nanostructures, were synthesized. The nanohybrids were developed by enriching the structure of MMT and GO with primary amines through a common and simplified method, which implies physical interactions promoted by ultrasonic processing energy. The influence of the new nanoreinforcing agents along with neat ones on the overall properties of the biobased epoxy materials for coating applications was assessed. Interface formation through surface compatibility was contained by the lower values of activation energy calculated from differential scanning calorimetry (DSC) curves, along with a consistent 70% increase in the cross-linking density when amine-modified MMT was used. Thermomechanical characteristics of the biobased epoxy nanocomposites were explained through the interaction of the functional groups over the curing process of epoxidized linseed oil (ELO), giving a 15 °C higher Tg value increase. Furthermore, the low surface energy values suggested an intrinsic antibacterial activity, as proved by a significant decrease of CFU against Staphylococcus aureus bacterial strains on the 0.25% reinforced coatings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.