Abstract

AbstractThe purpose of this study is to establish a numerical simulation model that addresses the combined thermal-hydraulic-mechanical process of frost heave. Of the several practical frost heave estimation theories, the authors adopt Takashi’s equation, which has been successfully applied to one-dimensional frost heave estimation. In this paper, Takashi’s equation is used to assess the frost heave ratio during freezing. Takashi’s equation is expanded for a two-dimensional evaluation by introducing an anisotropic parameter to distribute the frost heave ratio in different directions. This model couples Fourier’s law for heat transfer and Darcy’s law for unfrozen water flow. Latent heat is seriously evaluated by equivalent heat capacity method. For the thermal and hydraulic processes, this model considers temperature- and pressure-dependent hydraulic conductivity by an empirical equation. Both saturated and unsaturated conditions are addressed in this model. A finite-element method is adopted, and the time...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call