Abstract
In this study we have explored the pathogenesis of the hepatic alterations which occur in diabetes and the modulation of these complications by the combination of metformin adjunct treatment and insulin monotherapy. For this purpose, diabetic rats were treated with insulin (DM+Ins) or metformin plus insulin (DM+Met+Ins). Biochemical and cardiometabolic parameters were analysed by spectrophotometry. Intravital microscopy was used to study the hepatic microcirculation. In the liver tissue, real-time PCR was used to analyse oxidative stress enzymes, inflammatory markers and receptors for advanced glycation end products (AGE) (RAGE) gene expression. Lipid peroxidation was assessed by thiobarbituric acid reactive species (TBARs) analyses. AGE deposition and RAGE protein expression were studied by fluorescence spectrophotometry and Western blot respectively. Body weight, %HbA1c , urea, total proteins and oxidative stress parameters were found to be similarly improved by insulin or Met+Ins treatments. On the other hand, Met+Ins treatment showed a more pronounced effect on fasting blood glucose level than insulin monotherapy. Fructosamine, uric acid, creatinine, albumin and amylase levels and daily insulin dose requirements were found to be only improved by the combined Met+Ins treatment. Liver, renal and pancreatic dysfunction markers were found to be more positively affected by metformin adjunct therapy when compared to insulin treatment. Liver microcirculation damage was found to be completely protected by Met+Ins treatment, while insulin monotherapy showed no effect. Our results suggest that oxidative stress, microcirculatory damage and glycated proteins could be involved in the aetiology of liver disease due to diabetes. Additionally, metformin adjunct treatment improved systemic and liver injury in induced diabetes and showed a more pronounced effect than insulin monotherapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.