Abstract

AbstractBackground Despite aggressive treatment for glioblastoma multiforme (GBM), including surgical resection, radiotherapy and temozolomide (TMZ) chemotherapy, over 90% of patients experience tumor recurrence. Galectins are carbohydrate-binding proteins that are overexpressed in the stroma of GBM tumors, and are potent modulators of GBM cell migration and angiogenesis. The objective of this study was to analyze glioma and endothelial cell galectin expression in response to combined chemoradiation. Methodology The effects of TMZ, ionizing radiation, or combined chemoradiation on galectin protein secretion and expression were assessed in U87 orthotopically grown GBM tumors in mice, as well as in vitro in U87 human glioma cells and human umbilical vein endothelial cells (HUVECs). Results We found that combination chemoradiation increased galectin-1 and galectin-3 protein expression in U87 glioma cells. In response to radiation alone, U87 cells secreted significant levels of galectin-1 and galectin-3 into the microenvironment. HUVEC co-culture increased U87 galectin-1 and galectin-3 protein expression 14 - 20% following chemoradiation, and conferred a radioprotective benefit to U87 glioma cells. In vivo, radiation alone and combination chemoradiation significantly increased tumor galectin-1 expression in an orthotopic murine model of GBM. Conclusions Glioma cell galectin expression increased following combined chemoradiation, both in vitro and in vivo. The presence of endothelial cells further increased glioma cell galectin expression and survival, suggesting that crosstalk between tumor and endothelial cells in response to standard chemoradiation may be an important factor in mediating glioma recurrence, potentially via galectin upregulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.