Abstract
ABSTRACT The properties of elastomeric materials are strongly influenced by the inclusions resulting from the ingredients and the elaboration process. A methodology is proposed to differentiate the inclusions harmful for fatigue (larger than a few micrometers) in elastomers according to their chemical nature, and to characterize them quantitatively with sufficient statistics. Three techniques are used and compared: digital optical microscopy (OM), scanning electron microscopy (SEM) associated with energy dispersive X-ray spectroscopy, and X-ray micro-computed tomography (μ-CT). Six materials are used to challenge the methodology. In addition to the usual metal oxides and carbon black agglomerates, three atypical types of inclusions are highlighted, generating specific detection difficulties. A relevant image analysis procedure is developed to automatically detect the inclusions from the acquired images, more objectively and accurately than with the classical thresholding methods. The morphology and the spatial distribution of the different inclusions populations are then determined. μ-CT is the most comprehensive and accurate method for classification and statistical characterization of inclusions. Furthermore, relevant data on the size distribution of inclusions can be obtained using backscattered electrons (SEM-BSE) or digital OM. SEM-BSE provides more accurate results than digital OM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.